記法のテスト

nil

@skitaoka

fa-plus-square fa-file-text-o fa-location-arrow fa-arrow-circle-right

m_{j} = \int_{\Omega} f_{j}(\bar{x}) d\mu(\bar{x})
int main() {
    return 0;
}
def fizzbuzz(n):
    for x in ['Fizz Buzz' if i % 15 == 0 \
              else 'Fizz' if i % 3 == 0 \
              else 'Buzz' if i % 5 == 0 else i \
              for i in range(1, n+1)]:
        print(x)

統計学

分布を仮定

X \overset{\textrm{i.i.d.}}{\sim} N(\mu, \Sigma)

数値計算

数値的な誤差

a \approx b

モデルの近似

a \simeq b

定義

\vec{z} \overset{\bigtriangleup}{=} B \vec{y}

テスト

\underbrace{\overrightarrow{OX}}_{\substack{\overset{\bigtriangleup}{=} a b c\\\text{これはすごく重要}}}
\overbrace{\underbrace{\underline{\overline{OX}}}}_{\substack{\text{hoge}\\\text{hero}}}^{\substack{\text{foo}\\\text{bar}}}

文字種

\mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ}
\mathbf{ABCDEFGHIJKLMNOPQRSTUVWXYZ}
\mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ}
\mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ}
\mathit{ABCDEFGHIJKLMNOPQRSTUVWXYZ}
\mathsf{ABCDEFGHIJKLMNOPQRSTUVWXYZ}
\mathrm{ABCDEFGHIJKLMNOPQRSTUVWXYZ}
\mathtt{ABCDEFGHIJKLMNOPQRSTUVWXYZ}

音楽

度数

%Cm7%

%C#mM7aug(9,11,13)/Db%

%C7omit3%

X:1
T:Speed the Plough
M:4/4
C:Trad.
K:G
|:GABc dedB|dedB dedB|c2ec B2dB|c2A2 A2BA|
GABc dedB|dedB dedB|c2ec B2dB|A2F2 G4:|
|:g2gf gdBd|g2f2 e2d2|c2ec B2dB|c2A2 A2df|
g2gf g2Bd|g2f2 e2d2|c2ec B2dB|A2F2 G4:|
X: 1
T: Cooley's
M: 4/4
L: 1/8
K: Emin
|:D2|EB{c}BA B2 EB|~B2 AB dBAG|FDAD BDAD|FDAD dAFD|
EBBA B2 EB|B2 AB defg|afe^c dBAF|DEFD E2:|
|:gf|eB B2 efge|eB B2 gedB|A2 FA DAFA|A2 FA defg|
eB B2 eBgB|eB B2 defg|afe^c dBAF|DEFD E2:|
  %XM% %XM7% %X7% %X7sus4% %Xaug% %X7aug% %XM7aug% %XmM7aug% %X6% %Xm% %Xm7% %Xm7b5% %Xdim7% %Xm6% %XmM7% %Xdim%
%A% %AM% %AM7% %A7% %A7sus4% %Aaug% %A7aug% %AM7aug% %AmM7aug% %A6% %Am% %Am7% %Am7b5% %Adim7% %Am6% %AmM7% %Adim%
%B% %BM% %BM7% %B7% %B7sus4% %Baug% %B7aug% %BM7aug% %BmM7aug% %B6% %Bm% %Bm7% %Bm7b5% %Bdim7% %Bm6% %BmM7% %Bdim%
%C% %CM% %CM7% %C7% %C7sus4% %Caug% %C7aug% %CM7aug% %CmM7aug% %C6% %Cm% %Cm7% %Cm7b5% %Cdim7% %Cm6% %CmM7% %Cdim%
%D% %DM% %DM7% %D7% %D7sus4% %Daug% %D7aug% %DM7aug% %DmM7aug% %D6% %Dm% %Dm7% %Dm7b5% %Ddim7% %Dm6% %DmM7% %Ddim%
%E% %EM% %EM7% %E7% %E7sus4% %Eaug% %E7aug% %EM7aug% %EmM7aug% %E6% %Em% %Em7% %Em7b5% %Edim7% %Em6% %EmM7% %Edim%
%F% %FM% %FM7% %F7% %F7sus4% %Faug% %F7aug% %FM7aug% %FmM7aug% %F6% %Fm% %Fm7% %Fm7b5% %Fdim7% %Fm6% %FmM7% %Fdim%
%G% %GM% %GM7% %G7% %G7sus4% %Gaug% %G7aug% %GM7aug% %GmM7aug% %G6% %Gm% %Gm7% %Gm7b5% %Gdim7% %Gm6% %GmM7% %Gdim%
音階 1 2 3 4 5 6 7
長音階 %IM7% %IIm7% %IIIm7% %IVM7% %V7% %VIm7% %VIIm7b5%
自然短音階 %Im7% %IIm7b5% %bIIIM7% %IVm7% %Vm7% %bVIM7% %bVII7%
和声的短音階 %ImM7% %IIm7b5% %bIIIM7aug% %IVm7% %V7% %bVIM7% %VIIdim7%
旋律的短音階 %ImM7% %IIm7% %bIIIM7aug% %IV7% %V7% %VIm7b5% %VIIm7b5%

Graphvizとdot言語でグラフを描く方法のまとめ

digraph graph_name {
  alpha [
    label = "alpha node.",    //ノードラベル
    shape = box,              //ノードの形を指定する
    fixedsize = true,         //ノードの大きさを指定可能とする
    width = 1.5,              //ノードの幅(インチ)
    height = 1.2,             //ノードの高さ(インチ)
    style = "solid,filled"    //ノードの枠線のスタイルと塗つぶしの指定
    color = "#336666",        //ノードの枠線の色
    fillcolor = "#CC9999",    //ノードを塗りつぶす色
    fontname = "Migu 1M",     //ノードラベルフォント
    fontsize = 16,            //ノードラベルフォントサイズ
    fontcolor = blue          //ノードラベルフォントカラー
  ];
  beta;
}
digraph graph_name {
  graph [
    charset = "UTF-8";
    label = "sample graph",
    labelloc = "t",
    labeljust = "c",
    bgcolor = "#343434",
    fontcolor = white,
    fontsize = 18,
    style = "filled",
    rankdir = TB,
    margin = 0.2,
    splines = spline,
    ranksep = 1.0,
    nodesep = 0.9
  ];

  node [
    colorscheme = "rdylgn11"
    style = "solid,filled",
    fontsize = 16,
    fontcolor = 6,
    fontname = "Migu 1M",
    color = 7,
    fillcolor = 11,
    fixedsize = true,
    height = 0.6,
    width = 1.2
  ];

  edge [
    style = solid,
    fontsize = 14,
    fontcolor = white,
    fontname = "Migu 1M",
    color = white,
    labelfloat = true,
    labeldistance = 2.5,
    labelangle = 70
  ];

  // node define
  alpha [shape = box];
  beta [shape = box];
  gamma [shape = Msquare];
  delta [shape = box];
  epsilon [shape = trapezium];
  zeta [shape = Msquare];
  eta;
  theta [shape = doublecircle];

  // edge define
  alpha -> beta [label = "a-b", arrowhead = normal];
  alpha -> gamma [label = "a-g"];
  beta -> delta [label = "b-d"];
  beta -> epsilon [label = "b-e", arrowhead = tee];
  gamma -> zeta [label = "g-z"];
  gamma -> eta [label = "g-e", style = dotted];
  delta -> theta [arrowhead = crow];
  zeta -> theta [arrowhead = crow];
}